NGF promotes cell cycle progression by regulating D-type cyclins via PI3K/Akt and MAPK/Erk activation in human corneal epithelial cells

نویسندگان

  • Jiaxu Hong
  • Tingting Qian
  • Qihua Le
  • Xinghuai Sun
  • Jihong Wu
  • Junyi Chen
  • Xiaobo Yu
  • Jianjiang Xu
چکیده

PURPOSE Nerve growth factor (NGF) plays an important role in promoting the healing of corneal wounds. However, the molecular mechanism by which NGF functions is unknown. We investigated the possible effects of NGF on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) pathways and cell growth in human corneal epithelial cells (HCECs). METHODS We examined the effect of NGF on cell cycle and proliferation in HCECs by flow cytometry and cell proliferation assay, respectively. The levels of D-type cyclins in NGF-treated HCECs were determined by western blot. The tyrosine kinase A (TrkA), PI3K/Akt and MAPK/Erk pathways were then checked in cells stimulated with NGF for different time periods or cells undergoing a dose-dependent treatment. Furthermore, HCECs were treated with pathway inhibitors, LY294002 or PD98059, to confirm NGF-induced activations. RESULTS We found that NGF had a positive effect on the growth of HCECs, and D-type cyclins, and it was correlated with the percentage of the G(1) to S progression. We also observed a time-dependent and dose-dependent effect of NGF on the PI3K/Akt and MAPK/Erk pathways. Furthermore, NGF affected cell cycle progression of HCECs by regulating cyclin D through Akt and Erk activation upon treatment with the pathway inhibitors, LY294002 for Akt or PD98059 for Erk pathways. CONCLUSIONS NGF stimulation could promote cell proliferation and cell cycle progression of HCECs by activation of cyclin D via the PI3K/Akt and MAPK/Erk signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular taurine induces angiogenesis by activating ERK-, Akt-, and FAK-dependent signal pathways.

Taurine, a non essential sulfur-containing amino acid, plays a critical role in cardiovascular functions. We here examined the effect of taurine on angiogenesis and its underlying signal pathway. Taurine treatment increased angiogenesis in vitro and in vivo, which was followed by activation of the phosphatidylinositol 3-kinase (PI3K)/Akt, MEK/ERK, and Src/FAK signaling pathways. Further, taurin...

متن کامل

Fibroblast Growth Factor 2 Induces E-Cadherin Down-Regulation via PI3K/Akt/mTOR and MAPK/ERK Signaling in Ovarian Cancer Cells

Fibroblast growth factor 2 (FGF2) is produced by ovarian cancer cells and it has been suggested to play an important role in tumor progression. In this study, we report that FGF2 treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Slug and ZEB1, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K), mammalian targe...

متن کامل

Signal transduction pathway involved in the ex vivo expansion of limbal epithelial cells cultured on various substrates.

BACKGROUND & OBJECTIVE Ex vivo expansion of the limbal epithelial cells activates the nerve growth factor (NGF) mediated downstream signal transduction pathway. It is not clear as to which factors control the stemness of the corneal limbal stem cells, i.e., the maintenance of stem cell properties. It is likely that various signaling pathways are involved, including Notch, Wnt and NGF signaling,...

متن کامل

DEPTOR promotes survival of cervical squamous cell carcinoma cells and its silencing induces apoptosis through downregulating PI3K/AKT and by up-regulating p38 MAP kinase

DEPTOR is an endogenous inhibitor of mTOR complexes, de-regulated in cancers. The present study reveals a vital role for DEPTOR in survival of cervical squamous cell carcinoma (SCC). DEPTOR was found to be overexpressed in both cervical SCC cells and tissues and it's silencing in cervical SCC cells induced apoptosis, mainly by up-regulation of p38 MAPK and by inhibiting PI3K/AKT pathway via a f...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012